2 Finishing the Description of Fusion Trees 2.1 Motivation 2.2 the Problem -fixed-universe Successor 2.3 Overview of Fusion Trees
نویسنده
چکیده
More generally, the goal of fusion trees is to support the operations insert(x), delete(x), successor(x) and predecessor(x) in o(lgn) time on a transdichotomous RAM. The transdichotomous RAM model of computation was intrdouced in Lecture 2 (Feb. 12, 2003). The data-structure problem defined by these four operations is called the fixed-universe successor problem which was introduced in Lecture 1 (Feb. 10th, 2003). We have already studied two data structures that solve this problem, the van Emde Boas structure and y-fast trees, both achieving time bounds of Θ(lg lg u).
منابع مشابه
On the extremal total irregularity index of n-vertex trees with fixed maximum degree
In the extension of irregularity indices, Abdo et. al. [1] defined the total irregu-larity of a graph G = (V, E) as irrt(G) = 21 Pu,v∈V (G) du − dv, where du denotesthe vertex degree of a vertex u ∈ V (G). In this paper, we investigate the totalirregularity of trees with bounded maximal degree Δ and state integer linear pro-gramming problem which gives standard information about extremal trees a...
متن کامل2 Survey of Predecessor Lower Bound Results 2.1 the Problem 2.2 Results
Overview In the last two lectures, we discussed several data structures for solving predecessor and succes sor queries in the word RAM model: van Emde Boas trees, y-fast trees, and fusion trees. This establishes an upper bound on the predecessor problem. In this lecture we discuss lower bounds on the cell-probe complexity of the static predecessor problem with constrained space. In particular,...
متن کاملRandom trees and Probability
2 Binary search trees 2 2.1 Definition of a binary search tree . . . . . . . . . . . . . . . . . . 2 2.2 Profile of a binary search tree . . . . . . . . . . . . . . . . . . . . 3 2.2.1 Level polynomial. BST martingale . . . . . . . . . . . . . 3 2.2.2 Embedding in continuous time. Yule tree . . . . . . . . . . 6 2.2.3 Connection Yule tree binary search tree . . . . . . . . . . 7 2.2.4 Asymptoti...
متن کاملRandom trees for analysis of algorithms
2 Binary search trees 2 2.1 Definition of a binary search tree . . . . . . . . . . . . . . . . . . 2 2.2 Profile. Discrete martingale . . . . . . . . . . . . . . . . . . . . . 3 2.3 Embedding in continuous time. Yule tree . . . . . . . . . . . . . . 4 2.4 Martingale connection Yule tree binary search tree . . . . . . . . 5 2.5 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملTopographic Object Recognition through Shape
Chapter 1: INTRODUCTION Chapter 2: SHAPE-BASED DESCRIPTION 2.1 Fourier Descriptors 2.2 Moment Invariants 2.3 Scalar Descriptors Chapter 3: CLASSIFICATION 3.1 Supervised v Unsupervised Classification 3.2 Classification using Bayes Theorem 3.3 Implementing Bayesian Classification Chapter 4: COMBINING CLASSIFIERS 4.1 The Fusion Model 4.2 Theory 4.2.1 The Product Rule 4.2.2 Sum Rule 4.3 Classifier ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003